# А. Тумасян научный руководитель А. Сирунян

Jet algorithms development perspectives within HCAL upgrade

# Old segmentation (HE)

HPD (Hybride Photo-Diodes)



## 2 depth scheme

# New segmentation (HE)

#### SiPM (Silicon Photomultipliers, Hamamatsu, Ketek, FBK)

Башня перекрывания (кластеры можно разделить) Глубина 5 Глубина 4 – Глубина 3 \_\_ Глубина 2 — Глубина 1 Jet 2 Jet 1

## **5 depth scheme**

# Suggested Algorithm

- **1. Standard Reconstruction (identification of the main towers of energy)**
- **2.** Secondary Reconstruction (ReReconstruction) by towers depth.



#### 1. Identification of main towers

Particles number vs  $(\eta, \phi)$ 



Light quark jet:  $E_T = 50$  GeV;  $\eta = 2.4$ 

#### 2. ReReconstruction

- 1. Estimation of energy for each cell:  $E_{x,v,d}$
- 2. Looking for the path for cells from the last depth to the main towers:  $\Delta d=0$  or  $\Delta d=-1$ ; at only  $\Delta d=0$   $E_{cell} < E_{neighboring_cell}$
- 3. Checking for  $\Delta R < R_0$  (preliminary estimated  $R_0 = 0.175$  at  $|\eta| < 2.4$ )
- 4. Selected cells combined for secondary reconstruction

#### "Mini" tasks

- 1. investigation and development of active cells selection (MC)
- 2. Investigation of EM and Hadron showers characteristics depending on the energy and the composite particles of jet (MC + BeamTest)
- 3. Investigation of Magnetic field influence with the new segmentation (MC)
- 4. Investigation of boundary effects influence on the showers with the new segmentation (MC + BeamTest) etc

# TTH process at 8 TeV

### Associated *Higgs* production with *Top* quarks



σ ≈ 0.12 pb at 8 TeV *L*=19.6 fb<sup>-1</sup>

# **TTH** dilepton channel

 $H \rightarrow bb$  branching ~ 68%  $W \rightarrow lv$  branching ~ 21% ( $l = e, \mu$ )



branching ~ 3 % <u>σ ≈ 3.5 fb</u> ~ 70 Events

## **Kinematic Distributions of Objects**

#### **B-jets from H decay**



#### **B-jets from Top decay**





etaHb

Mean 0.004728

4

5

Entries

RMS

2

3

28890

1.15

# **Event Selection**

## **Require:**

- A pair of oppositely charged, isolated, energetic leptons (2 electrons, 2 muons or 1 electron and 1 muon)
   p<sub>t</sub>L<sub>1</sub>>20 GeV, p<sub>t</sub>L<sub>2</sub>>10 GeV, |η|<2.5 For electrons, |ηL<sub>1</sub>|<2.1, |ηL<sub>2</sub>|<2.4 For muons</li>
   3 or more jets, with at least two of the jets being b-tagged:
- p<sub>t</sub> >30 GeV, |η|< 2.5 anti-k<sub>T</sub> algorithm (R=0.5)
- **b-jets identification** Combined Secondary Vertex (CSV) algorithm

### **CMS PAS HIG-13-019**

# CMS results as of 2013/07/26



Figure 10: The observed and expected 95% CL upper limits on the signal strength parameter  $\mu = \sigma / \sigma_{SM}$  for the dilepton channel using the 2012 dataset.

### Conclusion

Combining the results from the lepton + jets, dilepton and tau channels, the observed and expected limits on the cross section for Higgs boson production in association with top-quark pairs for a Higgs boson mass of 125 GeV are 5.2 and 4.1 times the standard model expectation, respectively. The best-fit value for the signal strength  $\mu$  is  $0.85^{+2.47}_{-2.41}$  (68% CL).

#### CMS PAS HIG-13-019

## Higgs mass reconstruction

### LO scenario:

4 jets approximately similar by kinematic characteristics i.e. <u>6 possible combinations</u> for jet-jet invariant mass.

### **NLO scenario:**

4 LO-jets + 1(2,3,...) additional jets i.e. <u>10(15,21,...)</u> possible combinations for jet-jet invariant mass.

Needs additional conditions for identification of jets from *H* decay.

## **Additional Conditions**

## Lepton-Jet correlation:



## Lepton-jet correlation

### **Normalized distributions:**



### **True pair**

Wrong pairs with *Jet from Higgs* 

Wrong pair with Jet from Top (Antipair)

## **Distribution functions**



Jet\_1 {L1\_pair; L1\_AntiPair; L1\_Higgs\_b1; L1\_Higgs\_b2} Jet\_2 {L1\_pair; L1\_AntiPair; L1\_Higgs\_b1; L1\_Higgs\_b2} Jet\_3 {L1\_pair; L1\_AntiPair; L1\_Higgs\_b1; L1\_Higgs\_b2} Jet\_4 {L1\_pair; L1\_AntiPair; L1\_Higgs\_b1; L1\_Higgs\_b2}

# **Distribution functions**

### First step:

Jet(*i*) {*L1\_pair*; *L1\_AntiPair*; *L1\_Higgs\_b1*; *L1\_Higgs\_b2*} (*i*=1,2,3,4) Where

L1\_pair = L1\_pair\_Minv x L2\_AntiPair\_Minv x L1\_pair\_Dr x L2\_AntiPair\_Dr  $x \frac{1}{S}$ 

L1\_AntiPair = L1\_AntiPair\_Minv x L2\_pair\_Minv x L1\_AntiPair\_Dr x L2\_pair\_Dr  $x \frac{1}{C}$ 

 $L1\_Higgs\_b1 = L1\_Higgs\_b1\_Minv \times L2\_Higgs\_b1\_Minv \times L1\_AntiPair\_Dr \times L1\_Higgs\_b1\_Dr \times L2\_Higgs\_b1\_Dr \times \frac{1}{S}$ 

L1\_Higgs\_b2 = L1\_Higgs\_b1

S – normalizing factor for

L1\_pair + L1\_AntiPair + L1\_Higgs\_b1 + L1\_Higgs\_b2 = 1

# Distribution functions: First Step

|         | Ideal                                | Usual                                           |  |
|---------|--------------------------------------|-------------------------------------------------|--|
|         | scenario                             | scenario                                        |  |
| L1_pair | <b>34.4155</b><br>32.1887<br>16.6979 | <b>39.5351</b><br>22.4174<br>19.0238            |  |
| L2_pair | 0<br>68.9314<br>15.5343<br>15.534    | <b>31.1602</b><br>19.8722<br>24.4838<br>24.4838 |  |
| Higgs_b | 0<br>0<br>50<br>50                   | <b>37.5137</b><br>20.7938<br>20.8462<br>20.8462 |  |
| Higgs_b | 0<br>0<br>50<br>50                   | <b>18.9374</b><br>23.1907<br>28.936<br>28.936   |  |

Identification of one of b-jets from H decay with accuracy 68 % (Jet with highest Higgs\_b).

### Possible increase to 74 %

Identification of pair of b-jets from H decay with accuracy 30 % (Tow Jets with highest Higgs\_b factors).

## Distribution functions: Second Step

Remove founded jet from Higgs decay from the list of jets and than normalizing ather jets functions:

Jet\_1 {L1\_pair; L1\_AntiPair; L1\_Higgs\_b1; 0}
Jet\_2 {L1\_pair; L1\_AntiPair; L1\_Higgs\_b1; 0}
Jet\_3 {L1\_pair; L1\_AntiPair; L1\_Higgs\_b1; 0}
Jet\_4 = 0



- Dr H\_Jet1 & H\_Jet2
- Dr H\_Jet & T\_Jet

# Distribution functions: Second Step

|         | Ideal    | Usual          | Usual      |
|---------|----------|----------------|------------|
|         | scenario | scenario 1     | scenario 2 |
| L1_pair | 82.1298  | <b>46.6464</b> | 70.6968    |
|         | 0        | 25.6945        | 0          |
|         | 17.8702  | 27.6591        | 29.3032    |
|         | 0        | 0              | 0          |
| L2_pair | 0        | 0              | 0. 42898   |
|         | 73.9892  | 86.8776        | 71.3389    |
|         | 26.0108  | 13.1224        | 28.2321    |
|         | 0        | 0              | 0          |
| Higgs_b | 0        | <b>43.6167</b> | 0.0407     |
|         | 0        | 23.8449        | 89.083     |
|         | 100      | 32.5383        | 10.8763    |
|         | 0        | 0              | 0          |

Identification of one of b-jets from Top decay with accuracy 82 %.

# Distribution functions: Third Step

Remove founded jet from Top from the list of jets and than normalizing other jets functions:

Jet\_1 = 0



# Distribution functions: Third Step

|         | Usual<br>scenario            |
|---------|------------------------------|
| L2_pair | 0<br>76.0673<br>23.9327<br>0 |
| Higgs_b | 0<br>51.8378<br>48.1622<br>0 |

Identification of second b-jets from H decay with accuracy 64 % (Jet with highest Higgs\_b).

Total efficiency for selection of pair of jets from Higgs decay 36%.

Possible increase to 40 %.

## Invariant mass of selected jets



# Plans

- Check Algorithm on background process
- Check possibilities of Lepton Jet charge correlation
- Check possibilities of NLO-Jet LO-Jet correlation

## Work on MC with 14 TeV

## Thank You

## **Kinematic Distributions of Objects**

#### Charged Leptons (e, $\mu$ ) form W decay



## **Kinematic Distributions of Objects**

#### NLO jet wit highest transverse momentum



#### Number of jets with p<sub>t</sub>>20 GeV/c



With ~ 63%, for NLO jet with highest  $p_t$ :  $p_t > 20$  GeV,  $|\eta| < 2.5$ , and  $p_t$  is higher than pt of one LO jet.

In general <u>NLO jets</u> produced from light quarks and gluons