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Overview 

• C123alpha (photon, proton and neutron beams) 

• Fission studies with proton and neutron beams 

• Methodic studies-LPMWPC;  RF-PMT; RF-Streak 

Camera 

• Recoil detector, alpha hypercube 

• Delayed pion spectroscopy  

• Experiments at MAX-lab 

• Nuclear medicine  
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Image credit: Robert Hollow-2005  

 

Triple alpha reaction through the Hoyle resonance plays crucial role in the stellar helium burning.   

Physics Motivation-Astropysics 
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Triple alpha process in cosmos 

Recent ab-initio simulations predicted the energy of the Hoyle resonance- 

Light quark mass and interactions determines carbon and oxygen production, the 

viability of carbon-based life and the dynamics of stars 

Image credit: Dean Lee (modified) 

Earth and Mercury images from NASA 



5 

Depicted from A. Tamii: FB20-2012 



Prediction of Theoretical Models 
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Depicted from A. Tamii: FB20-2012 

Stellar 

burning 
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Physics Motivation-Nuclear Physics 

Carbon configurations  

(a)The earliest model, proposed in 1956, comprises a linear chain of three alpha particles. 

(b) 2001 Bose–Einstein condensate, the alpha particles are described by one single wave function. 

2012 the ground state and Hoyle state of carbon-12 were calculated from first principles.  

In the ground state the alpha particles were found to be arranged in a compact triangle (c) 

 The Hoyle state is a bent-arm configuration (d). 

 David Jenkins and Oliver Kirsebom 2012 
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Depicted from M. Itoh: Cluster-2012 

Physics Motivation-Nuclear Physics 

Two recent updates 

a) Prediction of the Hoyle state by ab-initio simulation  

 E. Epelbaum et al., Phys. Rev. Lett. 109, 252501, 2012 

a) Observation of long expected excited Hoyle state  

http://link.aps.org/doi/10.1103/PhysRevLett.109.252501
http://link.aps.org/doi/10.1103/PhysRevLett.109.252501
http://link.aps.org/doi/10.1103/PhysRevLett.109.252501
http://link.aps.org/doi/10.1103/PhysRevLett.109.252501
http://link.aps.org/doi/10.1103/PhysRevLett.109.252501
http://link.aps.org/doi/10.1103/PhysRevLett.109.252501
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Depicted from A. Tamii: FB20-2012 
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Depicted from A. Tamii: FB20-2012 
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M. Itoh: Cluster-2012 
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M. Itoh: Cluster-2012 

Inelastic scattering spectroscopy 

Decay particle spectroscopy 



Decay Kinematics 
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Dalitz plot (upper part) and the alpha-particle energy distribution (lower part) for the 

resonances at an excitation energy of (11.22, 11.76, 13.76) MeV or (3.95, 4.48, 6.49) MeV 

above the 3 alpha hreshold, which is 7.275 MeV above the ground state 

R. Alvarez-Rodrıguez-208 
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Schematic of the recoil detector 

1-incident particle (proton, neutron) 

2-target (p, C-12, C-13, O-16, Ne etc 

3-produced particle (p, n, d, .. 

4-magnet 

5-recoil particle (p, α, C-12,...) 

6-LPMWPC 

7-LPMWPC 

8-SSD 

Working gas-target 

 

Hexane- C6H14 - p; C-12 

CO2- C-12; O-16 

He-4 

He-3 

Ne 

Ar 



Ranges of the low-energy alpha particles 
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Ranges of alpha particles in (CH2)n 



dE/dx of the low-energy alpha particles 
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Electronic stopping power of alpha particles in (CH2)n 



Ranges of the low-energy 12C 
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Ranges of a 12C in (CH2)n 



dE/dx of the low-energy 12C 
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Electronic stopping power of  12C in (CH2)n 



Experimental Program-Bremsstrahlung Beam 

• Confirmation of HIGS result 

• Detail study of the 12C(γ,3α) near threshold 

• Study of 12C(γ,3α) in the all available energy 
region 

• Study of 16O(γ,4α); 20Ne(γ,5α); 40Ca(γ,10α) 
• Study of γ+16O12C+α  ? 

Threshold of the Hoyle state in 40Ca is ~60 MeV. 

If it is a Bose-Einstein condensation state it has 

to decay into 10 few hundred keV α-particles   
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Experiments at HIGS with O-TPC 

20 

A typical 3 alpha dissociation event detected by the O-TPC 



12C(γ,3α)-HIGS Experiment, O-TPC 
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The measured cross section of the 12C(γ, 3α)  reaction compared to the cross section for the 
predicted 2+ at 9.11 MeV.  The line through the data points is the sum of the cross section due to 

the 1-  resonance at 10.84 MeV and a constant background term. M. Gai et al., 2009, LCB, O-

TPC. 
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12C(γ,3α)-HIGS Experiment, O-TPC 

  

The measured cross section of the 12C(γ, 3α)  reaction (a) separated for E1 and 
E2 contributions and analyzed using one 2+ state plus the known 1- state at 

10.08 MeV and (b) analyzed with two 2+ states , M. Gai et al. (20111) 



12C(γ,3α)-Emulsion, 1953  
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Bremsstrahlung or monochromatic photon beams + nuclear emulsion  

12C(γ,3α) cross-sections for γ-ray energies less than 20.5 MeV and above. 

F.K. Goward and J.J. Wilkins, 1953. 



12C(γ,3α)-Kharkov Experiment, Diffusion Chamber 
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The total cross-section for the 12C(γ, 3α)  reaction, 
closed circles -Kharkov, 2004, diffusion chamber in 

magnetic field, methane (CH4) and He mixture 1:7, 

bremsstrahlung, Eγmax = 150 MeV:  

a) All events; 

b) Events with Eα<1MeV is removed. 

Histogram - F.K. Goward and J.J. Wilkins, 1953, open 

circles -Maikov et al.,1958, emulsion, bremsstrahlung;  

triangles -Kotikov et al., 2004, emulsion, 

bremsstrahlung. 
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Depicted from M. Itoh: Cluster-2012 



Nuclear Alpha-Particle Condensates 
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Cartoon of a Coulomb explosion of 10 alpha-particles 

from Ca-40 (T. Yamada et al., 2011) 

Low-pressure MWPC based multi-module detector is an ideal tool for detection of  10 

low-energy (few 100 keV) alpha particles from Coulomb explosion of  the Bose 

Einstein condensate state formed in Ca-40  (Hoyle state) which will be unambiguous 

confirmation of the existence of  BEC in a nuclear matter 



Alpha Detector-Active Target 
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Schematic representation of a 

single detector module 

Schematic of the experimental setup at Yerevan 

and at MAX-lab 

Schematic of the experimental  

setup at Yerevan 



Proton and Neutron Beams 

• p+13Cd+3α 

• p+12Cp’+3α 

• n+12Cn’+3α 

• p+16Op’+12C+α 

1) E0 transition strength to the 3α continuum 

2) Radiative branching ratio of the Hoyle state 

3) Hoyle states in 12C 

4) Hoyle state in 16O 
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M. Itoh: Cluster-2012 



 

Experimentally determined magnitudes of various 

Dalitz-plot components  

 
   SD    DDE  DDL  DDΦ     
Freer et al               1             ……….. ……….  <0.03 (0.04) 

Raduta et al      0.830(50)     0.075(40)  0.095(40)   ………. 
Manfredi et al         1   <0.003  ………..      <0.003 

Kirsebom et al        1   <0.0009 <0.0009                  <0.005 

Rana et al            0 .99        0.003(0.001)        <0.001            0.006(0.00 09) 
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SD- sequential decay 

DDE- direct decay equal energy  

DDL-direct decay linear chain  

DDΦ- direct decay phase-space  



• At low temperature due to different theoretical 

estimates 

 

• At medium temperature due to new 

experimental evidence for direct α-decay of 

the Hoyle state 

 

• At high temperature due to possible influence 

of first 2+ resonance in 12C 
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3α-reaction uncertainties 
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Depicted from A. Tamii: FB20-2012 
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Depicted from A. Tamii: FB20-2012 
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Depicted from A. Tamii: FB20-2012 



Radiative Branching Ratio of the Hoyle State 
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3α process and the formation of 12C  

The rate of the triple-alpha reaction 

r3α ∝ Γrad exp(−Q3α/kT)  

T- is the temperature  

Q3α- is the energy  

released in the12C(7.65 MeV)→ 3α decay 

Γrad -is the radiative width.  

 

 Γrad. =  ΓE2+ ΓE0+ΓE2+ ΓE0 + ΓCE + ΓE2 

 

Depicted from B. Alshahrani et al: EPJ-2013 



Experimental values of Γrad/Γ 

Reference                                  Reaction and Method                                                 Γrad/Γ × 10−4 

Alburger (1961)                         [10B(3He;p)12C] pγγ coinc                                          3.3(9)  

Seeger & Kavanagh (1963)       [14N(d; α )12C]  Recoiling 12C and α coinc                 2.82(29) 
Hall & Tanner (1964)                [10B(3He; p)12C] Recoiling 12C and p coinc               3.5(12) 

Chamberlin et al. (1974)            [12C (α; α ′)12C] Recoiling 12C  and α  coinc              4.2(2) 

Davids et al. (1975)                    [12C(p; p′)12C]  Recoiling 12C and p coinc                 4.30(20) 

Mak et al. (1975)                        [13C(3He; α)12C] Recoiling 12C and α coinc              4.15(34) 

Markham et al. (1976)                [12C(α; α′)12C] Recoiling 12C and α coinc                  3.87(25) 
Obst et al. (1976)                        [12C(p; p′)12C] pγγ coinc                                             4.09(29) 

--------------------------------------------------------------------------------------------------------------------  

Adopted                                                                                                                               4.13(11) 
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Depicted from B. Alshahrani et al: EPJ-2013 
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Alpha Hypercube- Unique Tool 

Working gas-target 

 

Hexane- C6H14 - p; C-12 

CO2- C-12; O-16 

He-4 

He-3 

Ne 

Ar 

Low-energy alpha detector-active target 

Cyclotron neutron beam 

//upload.wikimedia.org/wikipedia/commons/2/22/Hypercube.svg
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Schematic of the test setup at Yerevan 

Magnet 

0.1 mg/cm2 U-235 

MWPC-1 

MWPC-2 

Photon beam 

  Nuclear Fragment 

1-3 Torr Hexane- C6H14 
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Typical signal generated by alpha particle 



40 

Typical signal generated by fission fragment 
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Typical signal generated by alpha particle 
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Typical signal generated by alpha particle and relativistic electrons from Sr 
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Fission experiments at proton cyclotron 

1. Collinear cluster tri-partition: it will be the most sensitive studies 

of this new phenomena 

2. Fission cross section measurements  

First time the fission cross sections of pre-actinides (Pb, Au, Th..)  

will be measured with 18 MeV proton beam 

4. Studies of fission isomers with lifetimes 1-20 ns 

Developed setup can determine fission fragment production  

time with ~200 ps resolution   

3. Studies of n+Th-232fission mechanisms at ~1.6 MeV 



Fission Fragment Detector 
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Schematic of the fission fragment detector 
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Schematic of the  ternary fission experimental setup 



47 Depicted from Kamanin- 2010 



• LPMWPC, time-zero FF detector, low-energy 

recoil detector, alpha hypercube  

 

• RFPMT-THz photon detector, new timing 

system 

 

• RF Streak camera, spiral scanning, new timing 

system 
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Methodic Studies 

  



Spiral scanning with two RF deflectors 
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Spiral Scan Images 
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Potential RFPMT Applications 

HIGS PAC 10, June 15 A. Margaryan 51 



Possible applications at LHC 
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Delayed Pion Spectroscopy of Hypernuclei 
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Discovery of Hypernuclei  

Danysz & Pniewski 1952 

 

Neutron Star 

 
Ambartsumyan & Saakyan  1960 

Connection to compact star 



Nuclei       Baryon-Baryon Interaction       Neutron Star 

D.H.  

D.H. D.H.  

S.H. S.H. N.R. p 

S.H. S.H. N.R. N.R. n 

 
(uds) 

 
(uds) 

P 

(uud) 

n 

(udd) The single and double 
hypernuclei are the main 
sources of the strange 
sector of baryon-baryon 
interaction 

S=-1 

S=-2 

S=0 

Ambartsumyan and Saakyan  1960 ~42-known, 24 as a hyperfragment 
Expected number  > 8000 

~3000 - known 
Expected ~8000 

 

BB=NN+NH+HH 
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VΛN(r) = Vc(r) + Vs(r)(SΛ*SN) + VΛ(r)(lΛN*SΛ) + VN(r)(lΛN*SN) + VT(r)S12 

YN  B 
(3

H)  B 
(4

H) B 
(4

H* ) B 
(4

He) B 
(4

He* ) B 
(5

He) 

SC97d(S) 0.01 1.67 1.2 1.62 1.17 3.17 

SC97e(S) 0.10 2.06 0.92 2.02 0.90 2.75 

SC97f(S) 0.18 2.16 0.63 2.11 0.62 2.10 

SC89(S) 0.37 2.55 Unbound 2.47 Unbound 0.35 

Experiment 0.13 ± 0.05 2.04 ± 0.04 1.00 ± 0.04 2.39 ± 0.03 1.24 ± 0.04 3.12± 0.02 

Hyperon Nucleon  Interactions 

Accurate values of binding energies B of light 

hypernuclei is extremely important and needed for 

parameterization of the two body effective potential!!! 

High precision -spectroscopy has been successful for the spin  

dependent terms but unable to measure  binding energies 



Decay π Spectroscopy  Delayed π Spectroscopy 
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RFPMT based Cherenkov detector will open dour for delayed pion spectroscopy   
 



HπS Calibration by TOF Measurement 
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Pion momentum can be determined by TOF measurement of pions and electrons  
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7
He  7Li + - : Momentum Measurement (MC simulations) 

Expected level scheme of 7He and B(E2) 

calculated by Hiyama et al. with a 3-body 

cluster model for α+n+n  and  5He+n+n.  

Phys. Rev. C59 (1999)2351. 

Simulated spectrum of the decayed pions 

from 7
He  7Li + - decay  (96.8% - 

quasi-free, 2% - 115.06 and 117.63, 

118.15 MeV/c monochromatic lines each 

with 0.6% . 
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7
He  7Li + - : Lifetime Measurement (MC simulations) 

Sensitivity of lifetime measurement for the 5/2+ 

and 3/2+ states of 7
He  7Li + - case. N is the 

number of events.  

Time resolution is 100ps. 

Simulated and fitted lifetime distributions of the 5/2+ 

state. The input lifetime is 140 ps, time resolution is 

100 ps, number of events is 1000.  

The extracted lifetime is    139 ± 6 ps. 
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Timing Resolution and Statistics of Lifetime Measurement  

Ideal Timing Technique : timing resolution  

)/()(/ 2/122
Nt  

0t

%5/1/  N
Timing Technique  with finite time resolution  

t

For                                         and    pst 200

for  N=40000 events  

ps20

%5/ 

Regular Timing Technique  for lifetimes  

Timing Technique with RFPMT for lifetimes   

s
1010

s
1110

for  N=400 events  

MC simulations resulted:  



BARYON 2013: Beam particle time tagger with picosecond resolution 



Experiments at MAX-lab 

• Photo-fission of heavy actinide nuclei at MAX-lab; 

 

• Photo-fission studies of nuclei by virtual photon tagging at MAX-lab; 

 

• Helium photodisintegration near threshold; 

 

• Carbon photodisintegration into three alpha particles; 

63 63 

 

MAX-labMAX-IV   3GeV electron beam   

 

New generation synchrotron radiation center  

 

The European Spallation  Source -ESS 

 



Nuclear Medicine 

Single photon imaging 

RF PMT - new possibilities in time-domain single photon imaging 

64 64 

• FLIM - fluorescence lifetime imaging 

 

• FRET - Foster resonance energy transfer 

 

• STED - Stimulated Emission Depletion super resolution microscope 

 
• DOI - diffuse optical imaging 

 
•TOF-PET 

FLIM is a unique and versatile tool to be used by scientists working at 

the multi-disciplinary interface of biology, chemistry, physics and 

engineering.   Borst&Visser-2010 


