
Continuous Integration and Continuous Deployment 
tool

for Control applications and frameworks

Շարունակական ինտեգրման և շարունակական տեղակայման գործիք
հավելվածների և կառավարման հարթակների համար

L. Sargsyan



Key Aspects:

Frequent Code 
Integration

Automated Build and 
Test Processes Rapid Feedback Loop

Definition: Continuous Integration (CI) is a software development 
practice where developers regularly merge their code changes into a 

central repository. Each integration triggers automated builds and tests, 
allowing early detection of integration issues.

Continuous Integration



Key Aspects:

Automated 
Deployment Release Automation Minimal Manual 

Intervention

Definition: Continuous Deployment (CD) is an extension of CI where 
the code, after passing automated tests, is automatically deployed to 
production. It ensures a streamlined and automated release process.

Continuous Deployment



• CI/CD automates software development from 
code commit to production deployment, 
eliminating manual steps



Cloud infrastructure

Key 
components 

of cloud 
infrastructure:

Computing
• Virtual machines (VMs): These are isolated, virtualized computers that run on 

the cloud provider's physical hardware. 
• Containers: These are lightweight, portable units of software that package code 

and its dependencies. 
Storage
Networking
Security: Cloud providers offer a range of security features, 
including firewalls, intrusion detection systems, and 
encryption, to protect your data and applications.
Management tools: Cloud providers offer tools to manage 
your infrastructure resources, monitor performance, and 
automate tasks.

Interconnected hardware and software resources that provide on-demand 
computing services to the users.



CI/CD in the cloud infrastructure

Continuous Delivery: Cloud providers offer various deployment tools 
and services that automate the deployment process, enabling you to 

push your code to production with minimal manual intervention.

Continuous Integration: Cloud platforms offer containerization 
technologies like Docker, enabling you to build and test your code in 

isolated, ephemeral environments. This ensures consistent builds and 
deployments regardless of the underlying infrastructure. 



Motivation to use CI/CD Infrastructure

• The CERN Industrial Control Systems Group provides support and software 
solutions for WinCC OA applications used in general infrastructure, 
experiments, and associated institutes. To manage the complexity of these 
projects, we previously relied on manual and error-prone release procedures.

Challenges:
• Manual build and deployment processes leading to inconsistencies and errors.
• Lack of automation for common tasks, requiring expert intervention.

• Disconnected development and release processes, hindering efficiency.
• Difficulty in ensuring quality and security for software with millions of lines of 

code.



CI/CD Infrastructure for control applications 

The pipelines generate deployment-ready software releases, which pass through both 
static code analysis and unit tests before automatically being deployed to short and 
long-term repositories.

The tool chain leverages industry standard technologies, such as GitLab, 
Docker and Nexus. 

Example of the workflow. RELEASE GENERATION



CI/CD pipeline
The automation of the processes is achieved by use of GitLab Pipelines, executing jobs 
on private hosts with Docker executors, which run custom Linux images loaded with 
WinCC OA application and a set of custom tooling.

Service repackages WinCC OA for Windows and Linux. 

Each release is validated to meet the highest QA standards. The validation has 
been completely automated for Linux with the use of containers.



CI/CD pipeline

• After compilation, the release pipeline passes on to 
the build stage, where the tooling generates 
documentation and manuals, updates the component 
XML specification used for installing them, and 
packages it all into a zip file.

• Passing into the test stage, several QA jobs are run to 
find issues earlier in the development cycle, producing 
a stable and well tested set of components for 
deployment.

• Once packaged and tested, components 
and frameworks are deployed to 
repositories. Each repository serves its own 
purpose, and depending on the type of 
release, it is routed to a different one, 
completely automatically.



Tests
• Daily Unit Tests with full framework
• Daily Integration tests
• Allure reportsCode deployment

• Gitlab-CI Artifacts
• Nexus publisher
• EDMS publisher

Development and validation of the wccadm gitlab
component source in collaboration with BE-ICS-CE

Kobe build
• Version automatically generated
• Up to date Qt documentation with each build, available in project help
• Subcomponents included in every snapshot

• Used by hundreds of projects with millions of lines of code
• Collaboration across the group, the department and with experiments
• Consolidation of tools and procedures (e.g. wccadm and deployments)

• Automated QA integration in the early development process
• Successful component build triggers build (and tests) of the

framework snapshot

CI/CD Infrastructure for control applications 



Conclusion

release frequency

improved software quality

reduced development effort

early warning of issues

Benefits of CI/CD approach


